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Unusual Diastereofacial Selectivity in the Michael Addition Reactions of Lithiated
2- Aminoacetates and -acetamides to o,3-Unsaturated Carbonyl Compounds
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Unusual diastereofacial selectivities are observed in the Michael addition reactions of
lithiated aminoacetates and -acetamides to o,3-unsaturated carbonyl acceptors. Lithiated
(methylamino)acetates and -acetamides show opposite anti- and syn-selectivities,
respectively, while lithiated (dialkylamino)acetates and -acetamides are both highly syn-
selective.

Although Michael addition is one of the most valuable carbon-carbon bond forming processes, systematic
study has only recently started on the diastereofacial selectivity between the prostereogenic reaction centers. The
mechanistic aspect still remains ambiguous.12) Michael addition of metalated aminoacetates to a.,3-unsaturated
esters, leading to glutamate derivatives, is important in the field of a-amino acid chemistry. We have reported
the exclusively anti-selective Michael additions of lithiated (alkylideneamino)acetates 1 to o,-unsaturated
carbonyl compounds. Frontier orbital- and chelation-controlled rigid transition state of Z-enolates A was
proposed to be responsible for high anti-selectivities.3) The lithium E-enolates B derived from a-dibenzylamino
esters 24) undergo exclusively syn-selective Michael addition, making a striking contrast to our results.5)
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Lithiated alkoxyacetates have shown rather poor selectivities in the Michael additions to o,B-unsaturated
carbonyl acceptors, while reactions of lithiated alkoxyacetamides are highly syn-selective.0) We were interested
in such dependence of selectivity on the nature of enolate-stabilizing and a-hetero substituents, and continued a
study of Michael additions of lithiated o-hetero acetates and acetamides.”)

In this communication, we describe the unusual diastereofacial selectivities observed in the study of
Michael additions of lithiated aminoacetates and -acetamides. Lithiated (methylamino)acetates and -acetamides
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show high selectivities, but with opposite combinations of unlike and like faces (or with anti- and syn-
selectivities), respectively. On the other hand, reactions of lithiated (dialkylamino)acetates and -acetamides are
both syn-selective, with excellent selectivities in the latter cases.

t-Butyl (methylamino)acetate (3) and N-[(methylamino)acetyl]pyrrolidine (4) were lithiated with LDA in
THF at —78 °C and allowed to react with o,-unsaturated esters. Although structures of the enolates generated
could not be directly assigned, selective formation of Z-enolates Z-C is more likely by analogy to the previous
cases of Z-enolate generation from c-alkoxyacetates and -acetamides.8) The products were diastereomers of 5-
oxopyrrolidines 6a,b and 7a-¢ which were formed through cyclization of the initial Michael adducts (Scheme 1
and Table 1, Entries 1-5). The pyrrolidinones 6a,b derived from aminoacetate 3 were almost pure 2,3-trans-
isomers,?) indicating the far predominant formation of anti-Michael adducts as unisolable products. On the
other hand, pyrrolidinones 7a-c¢ derived from aminoacetamide 4 were composed of more cis-isomers. The
selectivity was satisfactorily high when the B-substituent of acceptor molecules was bulky (Entry 5).10) No
satisfactory explanation is available so far for the reversal of stereoselectivity.
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Lithiation of a-dialkylamino esters 2 is known to generate E-enolates B,%11) while the exclusive
formation of Z-enolates Z-C is expected from «-dialkylamino amides 5 on the ground of steric repulsion
between two bulky amino moieties.12:12) Michael additions of the lithium enolates of amides 5 to a variety of
o.,B-unsaturated carbonyl compounds were highly diastereoselective (Entries 6-14). The major isomers of 8a-i
were assigned to be syn-Michael adducts by a conversion of adduct 8a (syn:anti = 96:4). Thus, the LiBHy
reduction of 8a gave amide alcohol 12 (55%) which was then cyclized to lactone 13 as a single isomer. Its
stereochemistry was based on NOE spectrum (Scheme 1). Such high syn-selectivities from Z-enolates are also
unusual from the standpoint of Heathcock's transition model.12,b)

Several Michael additions of 5 are thermodynamically controlled. For example, reactions of Sa,c with
methyl cinnamate showed much lower selectivities at —78 °C (syn:anti = 60:40 and 71:29) than those at 0 °C or
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room temperature (syn:anti = 91:9 and 81:19, respectively). These results contrast with the virtually unchanged
selectivities of the reactions with methyl crotonate (Entries 6, 11, and 12). When a thermodynamically more
stable acceptor like the cinnamate is incorporated in Michael adduct, the retro process becomes relatively more
favored under severe conditions.13) Michael reactions of enones such as (E)-1-phenyl-2-buten-1-one and (E)-
2,2-dimethyl-4-hexen-3-one would be also thermodynamically controlled at 0 °C or higher.

Table 1. Michael Addition of Lithiated o-Amino Acetate 3 and Amides 4, 5 to o,B-Unsaturated Carbonyl

Compounds?)

Entry X Y R! R2  TempPC Time/h Product Yield/%b) syn:anti®
1 3 MeNH OBu- Me OMe -78/-50 32 6a 39 4:96
2 3 MeNH  OBu-t Ph OMe -78/-50 4/12  6b 27 2:98
3 4 MeNH N(CHy)4 Me OMe -78/-50 3/22 7a 67 68:32
4 4 MeNH N(CHp)s Ph OMe -78/-50 321 17b 75 75:25
5 4 MeNH N(CHp)s i-Pr OMe -78/-50 3/12 7c 60 >99:1
6 5a MeN NMe, Me OMe 0 5 8a 71 97:3d)
7 5a  MeN NMe) Ph OMe 0 7 8b 64 91:9d)
8 5a MeN NMe; i-Pr OMe 0 8 8c 42 75:259)
9 5a  MeN NMe, Me Ph 0 7 8d 87 88:12d)
10 5a MeN NMe; Me +-Bu 0 9 8e 85 77:23
11 5b MesN  N(CHp)4 Me OMe 0 6 8f 73 92:89)
12 5¢ N(CHp)4 N(CHp)4 Me OMe 0 7 8g 65 98:2d)
13 5c¢ N(CHpz)s N(CHp)g Ph OMe It 8 8h 58 81:199)

14 5¢ N(CHps4 N(CHp)s Ph  N(CHps O 7 8i 70 91:99)
a) Lithiation was performed with LDA in THF. b) Isolated yield. ¢) Determined by 1H NMR and/or HPLC.
d) Selectivities observed in the reactions at —78 °C are as follows: Entries 6 (99:1); 7 (60:40); 8 (78:22); 9
(84:16); 11 (94:6); 12 (99:1); 13 (71:29); 14 (85:15).

As mentioned above, reactions of lithium enolates of 3-5 with 3-alkylacrylates were kinetically controlled.
Constantly high selectivities were observed regardless of the reaction temperatures (between —78 °C and 0 °C).
In addition, reactions of the lithium enolates of 3-5 with methyl (E)-4-bromo-3-butenoate at —78 °C produced
methyl frans-cyclopropanecarboxylates 9-11 through intramolecular cyclization of the Michael adduct enolates.
The observed selectivities are shown in Scheme 1 for syn:anti ratios which are almost comparable to the kinetic
selectivities observed in the reactions of enolates of 3-5 with methyl crotonate.14)
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